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Abstract

This study assesses systemic risk in the US credit default swap (CDS) mar-
ket. After the bankruptcy of Lehman Brothers, the market introduced risk
mitigation tools, such as central clearing and portfolio compression in addi-
tion to existing netting and collateralization. Because CDSs typically have
been traded as over-the-counter derivatives, just after the bankruptcy, few
contracts were through central clearing, whereas in the first half of 2015,
this share increased to 26%. First, we estimate the bilateral exposures ma-
trix using aggregate fair value data on Call Reports by the Federal Deposit
Insurance Corporation (FDIC) and theoretically analyze interconnectedness
in the US CDS network using various network measures. The robustness of
the estimated bilateral matrix is fully assured by sensitivity analysis using a
core–periphery model and modified Jaccard index. Second, we theoretically
analyze the contagious defaults introducing the Eisenberg and Noe frame-
work. The network analysis shows that three to six dealers were central in
the network in the past. The default analysis shows the theoretical occur-
rence of many stand-alone defaults and one contagious default via the CDS
network during the global financial crisis. A stress test based on a hypothet-
ical severe stress scenario predicts almost no future contagious defaults. To
conclude, the risk contagion via the CDS network is unlikely.
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1. Introduction

There has been growing interest in the systemic importance of financial
institutions stemming from credit default swap (CDS) contracts among US
market regulators. Hence, the lack of both theoretical and empirical stud-
ies on the role of CDSs and their interconnectedness has become a major
issue. The purpose of this study is to analyze the systemic importance of
CDS market dealers in the US financial market.1 Network analysis plays an
important role in the analysis of systemic importance.

During the global financial crisis, CDSs became known as derivatives that
triggered the systemic contagion risks in the derivative market. A typical ex-
ample of contagions related to CDS contracts is the management crisis of
American International Group (AIG), which was a major seller of CDSs.
However, the AIG crisis was actually caused by a London-based derivative
subsidiary – AIG Financial Products (AIG–FP), most of whose counterpar-
ties were Western financial institutions, such as Société Générale, Goldman
Sachs, Deutsche Bank, Merrill Lynch, Calyon, UBS, and Deutsche Zentral-
Genossenschaftsbank (Coral Purchasing) (ECB, 2009).

As at the end of September 2008, the aggregate gross notional amount
of credit derivatives sold by AIG was 493 billion US dollars or 372 billion
US dollars on a net basis. This amount potentially could affect the whole
financial network. The net notional amount was almost double the aggregate
net notional amount sold by all Depository Trust and Clearing Corporation
(DTCC) dealers combined at the end of October 2008. However, as at the
end of 2006, AIG was not ranked among the largest CDS market dealers
in a Fitch survey, because AIG mainly sold bespoke CDSs, which were not
covered by the DTCC data. Finally, as federal assistance to AIG, almost
50 billion US dollars was paid to the CDS counterparties at the end of 2008
(Harrington, 2009).

Since before the global financial crisis, the CDS market has had risk
mitigation tools, such as netting and collateralization. Thereafter, signifi-
cant contributions have been made with the aim of standardizing contracts,
especially for the use of central counterparties (CCPs), including portfo-
lio compression2 and the International Swaps and Derivatives Association

1Major CDS dealers in the US CDS market are listed as G14 in Table A.6.
2Such companies as TriOptima provide compression services of CDS contracts (Gregory,

2014). This has been instrumental in reducing exposures.
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(ISDA) “Big Bang” CDS Protocol in 2009. However, CDSs have typically
been traded as over-the-counter (OTC) derivative instruments. At the end
of 2010, while there was central clearing of a large proportion of all standing
OTC interest rate products, mainly swaps, less than 10% of CDSs (on the
basis of notional amounts outstanding) were cleared through central coun-
terparties (Gregory, 2014; BIS, 2016). In the aftermath, at the end of June
2015, the share increased to 31% (BIS, 2016).

First, we analyze interconnectedness in the US CDS market using net-
work centrality measures (“network analysis”) (Jackson, 2010). We use the
aggregate fair value data before considering collateralization on Call Reports
by the FDIC. Our dataset covers most contracts by counterparties in the
US CDS market. By contrast, because the other dataset from the DTCC
contains the names of reference entities but the identity of the counterpar-
ties is anonymized, it is not available for our network analysis. From our
analysis result, the US CDS market was composed of 10–20 major players,
including dealer banks and non-dealer banks, during 2006–2015 and most
contracts were executed via five dealers—JPMorgan Chase, Bank of Amer-
ica, Citibank, Goldman Sachs, and HSBC Bank USA.

Second, we conduct a model analysis of contagious defaults, applying
the Eisenberg–Noe framework (Eisenberg and Noe, 2001) to the US CDS
network and setting up a default mechanism (“default analysis”). In this
framework, defaults are classified into stand-alone defaults and contagious
defaults, which are defaults that trigger a domino effect. In the original
Eisenberg–Noe framework, multi-step defaulting events are not expressed.
Because contagious defaults can be caused in a specific setting, it is im-
portant to determine whether this framework is suitable for the theoretical
analysis using real-world data. Strictly speaking, this framework describes
only simultaneous defaults for one period, not a dynamic setting for a multi-
period context. We use the framework in the multi-period setting using
continuously estimated market values of assets and theoretically analyze the
US CDS network. In addition, it is important to validate whether many
defaulting and non-defaulting banks suffered losses owing to the payment
defaults by the defaulting counterparties.

In addition, we conduct a stress test to assess the occurrence possibilities
of contagious defaults in the future. An important preparation to conduct
these analyses is the estimation of bilateral exposures in the US CDS mar-
ket. To check the robustness of the estimated matrix, we conduct sensitivity
analysis. Our methodology could assist in the development of monitoring
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and early-warning indicators related to systemic risk in the CDS network by
supervisory authorities. Furthermore, it could be used in the implementation
of banks’ internal systemic stress tests of default contagion.

The rest of this paper is organized as follows. Section 2 reviews the
extant literature on systemic risk in the CDS market and the interconnect-
edness in financial networks. Section 3 describes the network structure and
the mechanism of defaults in the CDS market, and Section 4 describes the
data used in this study. Section 5 discusses the estimations of the bilateral
exposures matrix and market value of assets. Section 6 presents the results of
the risk analysis. Section 7 assesses the robustness of the estimated bilateral
exposures matrix, and Section 8 concludes.

2. Literature review

Brunnermeier et al. (2013) assess the potential systemic and contagion
risks arising from a credit event for a major CDS reference entity or from the
default of a key player in the CDS market. In particular, they argue that the
multi-faceted nature of interconnectedness is difficult to capture in existing
analytical frameworks. First, to understand risk transfer and risk-bearing
capacity better, it would be necessary to know whether CDS exposures stem
from proprietary trading, market making, or hedging. Second, counterparty
credit risk is material in other OTC derivatives markets, in which the trans-
action volume cleared by CCPs is still relatively small.

Peltonen et al. (2014) analyze the network structure of the CDS market,
using a sample of counterparties’ bilateral notional exposures to CDS on 642
sovereign and financial reference entities as of the end of 2011. They use
the dataset obtained from the DTCC to analyze the CDS exposures network
from three different perspectives: (i) the “aggregated” CDS network,3 (ii)
sub-networks with a lower “aggregated” level, such as the sovereign CDS
network, and (iii) networks for CDS reference entities. Their dataset con-
tains the names of reference entities, but the identity of the counterparties
is anonymized. Regarding the determinants of the network structure, they
find a significant impact of the characteristics of the underlying bond expo-
sure (size and collateralization) and of the risk characteristics of the CDS

3They define the aggregated CDS network using an unweighted adjacency matrix.
Hence, some metrics, such as diameter, mean degree, and weighted degree, are difficult to
calculate for a weighted network.
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(volatility and commonality in returns) on the market size and activity of a
given CDS reference entity.

Markose et al. (2012) provide an empirical reconstruction of the US
CDS network for the fourth quarter in 2007 and 2008. The propagation
of financial contagion in networks with dense clustering that reflects high
concentration or localization of exposures between few players is identified
as “too interconnected to fail.” Systemic risk management from bank fail-
ures in uncorrelated random networks is different from those with clustering.
Because systemic risk of highly connected financial institutions in the CDS
markets is not priced into their holding of capital and collateral, they de-
sign a super-spreader tax based on eigenvector centrality of the banks that
can mitigate potential socialized losses. Eigenvector centrality is one of the
centrality measures and expresses the influence of a node in a network.

Network analysis is a highly effective approach to examine interconnect-
edness in CDS markets, which represent complex contract networks, with a
set of “nodes” connected by “edges.” In a CDS network, the nodes represent
players and the edges represent the CDS contracts between the players.

An analysis of CDS networks would alert the supervisory authorities or
individual financial institutions about “contagion risk” from the channels
through which shocks propagate. Hence, the resilience of a network is tested
in such analyses, and systemically significant nodes are identified. In addi-
tion, network analysis provides an empirical tool to test the effectiveness of
macro-prudential policies.

An analytically tractable example in financial networks is the interbank
network, which is characterized by bilateral exposures in the interbank mar-
ket. In many countries, data pertaining to bilateral exposures are not pub-
lished, and many researchers are unable to use these data. This difficulty is
the same as that with CDS exposures data. Therefore, estimating the bilat-
eral exposures matrix with the elements exposed from one bank to another is
a significant challenge. Recently, some studies have adopted an information
theory-based method that minimizes the amount of information required in
the bilateral exposures matrix (e.g., Censor and Zenios, 1998; Sheldon and
Maurer, 1998; Upper and Worms, 2002; Wells, 2004).

The extant literature on financial networks includes two approaches. The
first describes the network structure using topological indicators. The litera-
ture often relates these indicators to model graphs based on network theory.
This approach does not assume a mechanism by which shocks propagate
within the network; therefore, it is referred to as “static network analysis”
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(Alves et al., 2013). Eisenberg and Noe (2001), Boss et al. (2004), Afonso
et al. (2011), Puhr et al. (2012), Tirado (2012), and Kanno (2015, 2016)
are examples of studies based on this approach. Using the Austrian central
credit register, Boss et al. (2004) and Puhr et al. (2012) report that the
Austrian interbank market is hierarchized, and banks within subsectors tend
to cluster together. The hierarchization of core banks and peripheral banks
is confirmed for several national interbank systems, such as in Belgium (De-
gryse and Nguyen, 2007), Germany (Craig and von Peter, 2014), Italy (Iori
et al., 2008), the Netherlands (In’t Veld and Van Lelyveld, 2012), and the
United Kingdom (Langfield et al., 2014).

The second approach assesses the strength of the contagion channels and
the resilience of the network by observing the responses of financial network
structures to shocks. The introduction of a shock assumes a specific trans-
mission mechanism, such as defaults by market dealers. This approach is
referred to as “dynamic network analysis” in Alves et al. (2013). Some ex-
tant studies that focus on the analysis of contagion effects include Elsinger
et al. (2006), Cocco et al. (2009), Haldane and May (2011), and Duan and
Zhang (2013).

Eisenberg and Noe (2001) develop a fundamental framework for assess-
ing contagious default. According to their theorem, under mild regularity
conditions, a unique “clearing payment vector” exists that clears members’
obligations from the clearing system. However, because no closed-form so-
lution exists for the distribution of the payment vector in this algorithm,
a simulation approach based on hypothetical scenarios must be used. The
model discussed in Section 3 provides details about this approach.

3. Network structure and default mechanism

In this section, we describe the network structure of the US OTC CDS
market and the mechanism of contagious defaults in the market.

3.1. Network structure

CDSs typically are traded as OTC derivative instruments. Before the
global financial crisis, OTC clearing mostly was conducted bilaterally be-
tween the dealers involved (left panel of Figure 1). By contrast, central
clearing has been introduced in 2009 (right panel of Figure 1). BIS statistics
(BIS, 2016) shows that the outstanding contracts held with CCPs at the
end of June 2010 accounted for 9.8% of the notional amounts of outstanding
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CDSs, whereas they accounted for only 3.8% of the outstanding gross mar-
ket values (GMV); at the end of June 2015, each share had monotonically
increased to 31% and 26%, respectively. The time-series transitions for the
share with banks (dealer banks and other banks) and the share with CCPs
after the first half of 2010 are shown in Figure 2. We recognize that the
decrease in the share with banks results in the increase in share with CCPs.

The CDS market players comprise dealers and non-dealers. The non-
dealers include pension funds, asset managers, hedge funds, other banks (ex-
cept dealer banks), and non-financial companies. In terms of number of
trades and notional amounts outstanding, shares for dealer–dealer in the US
OTC CDS market are 83.7% and 81.6%, respectively (Table 1). Hence, we
deal with dealer–dealer trades and other bank trades included in non-dealer
trades in relation to the network structure of the US OTC CDS market, al-
though our dataset from FDIC Call Reports does not distinguish between
them.

After the bankruptcy of Lehman Brothers, two CCPs—ICE Clear Credit4

and CME Group5—offer central clearing functions in the US OTC CDS mar-
ket. ICE Clear Credit is a major clearing house whereas CME Group’s vol-
umes have been small (Gregory, 2014). In central clearing, because a CCP
stands between market dealers, it has a matched book and takes on the
counterparty risk.

Hence, we solve the payments for the bilateral market without central
clearing because in the central clearing market, a counterparty to a dealer is
a CCP that takes responsibility for closing out all the positions of a defaulting
clearing member.

3.2. Default mechanism

We assume that the market value-based balance sheet is composed of the
market value-based asset and equity values. This sheet is divided into an

4ICE Clear Credit is a dedicated CDS clearing house based in the US. It was launched
in March 2009 as ICE Trust US and was regulated as a bank by the New York State
Banking Department and the Federal Reserve Board of Governors. The clearing house
has offered indirect clearing for buy-side firms since December 2009. On July 16, 2011,
in accordance with the Dodd–Frank Wall Street Reform and Consumer Protection Act,
the clearing house became a CFTC-regulated derivatives clearing organization and SEC-
regulated securities clearing agency and changed its name to ICE Clear Credit.

5Dealer names in two CCPs are listed in Table A.6.
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Figure 1: The network structure of the US OTC CDS market

Note: left panel: bilateral market; right panel: central clearing market.
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Figure 2: Shares in the global OTC CDS market

Note: All figures are adjusted for double counting. Gross market values (GMV) have
been calculated as the sum of the total “gross positive market value” of contracts
and the absolute value of the “gross negative market value” of contracts with
non-reporting counterparties.

Source: BIS statistics.
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Table 1: Dealer/non-dealer trading volumes in the US OTC CDS market
(unit amount: in billions of US dollars)

No. of trades Notional amounts
Dealer – dealer trades 1,798,455 12,142
Non-dealer sells to dealer 155,723 1,266
Non-dealer buys from dealer 193,235 1,449
Non-dealer – non-dealer trades 2,470 24
Subtotal: Non-dealer trades 351,428 2,739

Total 2,149,883 14,881
Dealer – dealer share 83.7% 81.6%
Non-dealer related share 16.3% 18.4%

Note: The data are for the week of April 26–30, 2010.

Source: DTCC and Kamakura Corporation (Kamakura, 2010).

item in response to CDS payments and the other items. To this end, we
apply the fundamental framework proposed by Eisenberg and Noe (2001)
for risk analysis of the OTC CDS market. Following their framework, we
simultaneously solve CDS payments of all the players in the market. The
monthly solutions are obtained using the market value-based parameters of
assets and volatilities estimated from a continuous-time model.

Consider a set of CDS market dealers N = {1, . . . , N} at time t ∈ [0, T ].
The CDS network structure is represented as (L, e), where L = (lij)1≤i,j≤N

is an (N × N) CDS bilateral exposures matrix, and e is the exogenous net
claims cash flow vector, which is calculated as the difference between the
market value of assets and the book value of liabilities.

If the total value of a CDS player becomes negative for a pair (L, e), the
dealer becomes insolvent. Let di =

∑N
j=1 lij represent the total obligations of

dealer i to all players j (any j ∈ N ) of the network. In addition, we consider
a matrix Π ∈ [0, 1]N×N , which is derived by normalizing the entries with the
total obligations:

Πij =

{
lij
di

, if di > 0

0 , otherwise.
(1)
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For any di > 0, an expected CDS payment claims row vector d
′
Π is as follows:

d
′
Π =

[
d1 d2 · · · dN

]


l11
d1

· · · l1j
d1

· · · l1N
d1

...
. . .

...
...

...
li1
di

· · · lij
di

· · · liN
di

...
. . .

...
...

...
lN1

dN
· · · lNj

dN
· · · lNN

dN


=

[ ∑N
i=1 li1

∑N
i=1 li2 · · ·

∑N
i=1 liN

]
.

(2)

A CDS network is described as a 3-tuple (Π, e, d), for which we define a
clearing payment vector p∗. The clearing payment vector represents the
limited liabilities of the dealers and the proportional sharing in the event of
a default. A payment vector p∗ ∈ [0, d] is a clearing payment vector if and
only if the following condition holds:

p∗i =


di , case 1: if

∑N
j=1 Π

′
ijp

∗
j + ei ≥ di∑N

j=1 Π
′
ijp

∗
j + ei , case 2: if 0 ≤

∑N
j=1 Π

′
ijp

∗
j + ei < di

0 , case 3: if
∑N

j=1 Π
′
ijp

∗
j + ei < 0

(3)

The condition for case 1 is a solvent case for bank i. By contrast, the condi-
tions for cases 2 and 3 are defaulting cases. The loss vector for the dealers is
calculated as follows:

loss := Π
′
d− Π

′

newp
∗. (4)

The matrix Πnew is defined in the following equation (6). We adopt the
default algorithm developed by Eisenberg and Noe (2001) to find a clearing
payment vector. They prove that a unique clearing payment vector always
exists for (Π, e, d) under mild regularity conditions. These results apply to
our multi-period framework.

The number of defaulting players is calculated by comparing the clear-
ing payment vector with the current payment vector. A theoretical default
algorithm is implemented to calculate the clearing payment vector, which is
summarized as follows:

Step 1: Initialize pj = dj and calculate the net claim value of bank j as
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vj :=
∑N

m=1 Π
′
jmpm + ej − dj. If vj > 0, its bank does not default, the

clearing payment vector is pj = dj, and this algorithm ends. Otherwise,
proceed to Step 2.

Step 2: Find banks with net value vj < 0 that can pay only a part of their
liabilities to other banks. The ratio is defined as follows:

θj :=

∑N
m=1 Π

′
jmpm + ej

dj
∈ (0, 1). (5)

Under this assumption, only the banks identified in Step 2 would de-
fault. We replace lij with θjlij to ensure the limited liability criterion
is met. Thus, we obtain new lij,Πij, di, and vi. For example, when lij
is replaced with lnewij := θjlij (i = 1, . . . , N ; j = a fixed number), the
new Π is as follows:

Πnew =



l11
dnew
1

· · · θj
l1j

dnew
1

· · · l1N
dnew
1

...
. . .

...
...

...
li1

dnew
i

· · · θj
lij

dnew
i

· · · liN
dnew
i

...
. . .

...
...

...
lN1

dnew
N

· · · θj
lNj

dnew
N

· · · lNN

dnew
N


. (6)

where the new di is dnewi = li1 + · · · + (θjlij) + · · · + liN . Step 2 is
repeated for all defaulting banks.

This procedure provides a clearing payment vector for the CDS network that
satisfies equation (3). Next, we distinguish between a stand-alone default
caused by a guarantor’s insolvent situation and a contagious default caused
by the defaults of other banks. These two types of defaults are described as
follows:

Type 1: Stand-alone default:

Vi(T ) −Di(T ) :=
( N∑

j=1

Π
′

ijdj − di

)
+ ei ≤ 0. (7)

where Vi(T ) is the market value of the total assets of bank i at time
t = T (T = 1 month, 2 months,. . . ), and Di(T ) is the total face value of
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the interest-bearing liabilities with regard to bank i at time t = T and
is fixed quarterly. The net claims of bank i are composed of CDS net
positive exposures (

∑n
j=1 Π

′
ijdj − di) and non-CDS net exposures (ei).

Bank i falls into stand-alone default if it cannot honor its payments,
under the assumption that all of the other banks honor their promises.

Type 2: Contagious default:(∑N
j=1 Π

′
ijdj − di

)
+ ei > 0, (8)

and(∑N
j=1 Π

′
ijp

∗
j − di

)
+ ei ≤ 0. (9)

A contagious default occurs when bank i’s net claims are positive (equa-
tion (8)) but other banks cannot fulfill their promises to the bank (equa-
tion (9)).

The estimation for the non-CDS net exposures in equation (7) is provided as
follows:

ei = Vi(T ) −Di(T ) −
( n∑

j=1

Π
′

ijdj − di

)
. (10)

Because both net CDS exposures (
∑n

j=1 Π
′
ijdj−di) and total liabilities Di(T )

are constant, and total asset value Vi(T ) is a random variable, net non-CDS
exposures (ei) is a random variable as well. Therefore, we first estimate the
market value of Vi(T ) (T = 1 month, 2 months,. . . ) in a multi-period setting
using equity data.

4. Data

The financial data used in our research, including market capitalization
data, are obtained from the Bankscope database provided by Bureau van
Dijk. In addition, the data for the CDS contracts come from Call Reports,6

6In the literature review, we mention Peltonen et al. (2014) as an example of using
the dataset from the DTCC. The DTCC dataset contains the names of reference entities,
but has no detailed information for the time-series and counterparties. Hence, the DTCC
dataset is not available for our network analysis.
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as collected by the FDIC under Section 1817(a)(1) of the Federal Deposit
Insurance Act. All regulated financial institutions in the United States are
required to file periodic financial and other information with regulators and
other parties. Each national bank, state member bank, and insured non-
member bank is required by the Federal Financial Institutions Examination
Council (FFIEC) to file a Call Report.

In the Call Reports, we use two items: gross positive fair value (GPFV)
and gross negative fair value (GNFV).7 GPFV is the sum total of fair values
of contracts in which a bank is owed money by its counterparties, without
taking the effect of netting and collateral into account, and is adjusted for
compression, if any. GNFV is the sum total of fair values of an institution’s
contracts in which the bank currently has a balance outstanding to the coun-
terparty. In addition, GNFV is the same as GPFV in terms of treatment of
netting, collateral, and compression.

In terms of netting, we calculate “netted current credit exposure” from
GPFV and GNFV after taking legally enforceable bilateral netting agree-
ments into account. As for collateral, there are no data by counterparty.
However, the ISDA used the percentage (69%) of trades covered by collateral
agreements rather than the percentage of credit exposure covered by collat-
eral to calculate the impact of collateral on credit exposure (ISDA, 2013).
Based on this figure, a significant risk mitigation effect for collateralization
is expected.

Furthermore, in the light of central clearing and compression, the CDS
data from the FDIC Call Reports cover bilateral OTC contracts, including
ones that are centrally cleared. According to the ISDA OTC Derivatives
Market Analysis Year-End 2012, approximately 18% of CDS notional out-
standing was eliminated via portfolio compression in 2012 (ISDA, 2013).

The share for the top 22 US banks ranked in terms of fair value amounts
is more than 99% of the amounts listed in Call Reports. Nonetheless, AIG is
not included in this report because it is not a bank and sold mainly bespoke
CDSs.

7“Fair value” is a specific type of “market value.” It is defined by a legal or regulatory
jurisdiction and varies with individual jurisdictions. Therefore, GMV in the BIS statistics
of Figure 2 is in accordance with “gross fair value” in the FDIC Call Reports.
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5. Estimations

5.1. Bilateral exposures matrix

If all players in the US CDS network are included in the estimation of the
bilateral exposures matrix, the bilateral positive fair value matrix would be
in perfect accordance with the bilateral negative fair value matrix. According
to our data resource—Call Reports by the FDIC—the average difference be-
tween both matrices from March 2006 to September 2015 is only 3%. Hence,
in the US CDS market assumed in our research, almost all market dealers
and other banks are covered. Thus, we estimate the bilateral exposures ma-
trix using two aggregated fair value data and calculate the netted current
credit exposure matrix by netting of the bilateral positive fair value matrix
and the bilateral negative fair value matrix. Refer to Appendix B for details.

Our dataset is based on fair value data reported by US banks. However,
the data with dealer banks are not subdivided into the data with CCP-related
trades, such as dealer–CCP trades, and data with non-CCP-related trades,
such as dealer–dealer trades and dealer–non-dealer bank trades, in FDIC Call
Reports. Because the counterparty risk to CCPs is currently almost zero,8 the
gross fair values with CCP-related trades need to be excluded from the gross
fair values with dealer banks. The average market share with CCP-related
trades in terms of GMV is indicated by the dotted line labeled as CCPs—
GMV in Figure 2. Thus, for example, if the gross fair value reported by a
dealer bank in a quarter is 100 billion US dollars and the share with CCPs
in the year is 10%, the weight-averaged gross fair value is then calculated as
90 billion US dollars (= 90billion×1 + 10billion×0).

5.2. Market value of assets

We need to consider the market value of assets, volatilities, and drifts in
order to calculate the probabilities of default in the context of the structural
model approach of credit risk. Because the asset value is a latent variable,
it cannot be calculated directly. Hence, we estimate the market value-based
parameters of assets using the estimation procedure applied by Duan (1994,
2000), Crosbie and Bohn (2003), and Duan et al. (2004). Refer to Appendix
C for the details.

8CCPs have failed in the past and hence, have been shown to be potentially dangerous
(Gregory, 2014).
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Table 2: Descriptive statistics of bilateral exposures (in 1,000 US dollars)

percentile Dec-07 Dec-08 Dec-09 Dec-10 Dec-11 Dec-12 Dec-13 Dec-14
25th 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0
75th 1 1 0 0 0 0 0 0
95th 5,821 16,491 3,692 1,586 2,486 616 478 303

Maximum 2,724,729 9,980,327 3,487,037 2,258,791 1,698,595 1,070,212 2,286,276 4,177,477
Mean 16,992 44,626 23,837 11,984 10,871 8,292 10,459 13,760
S.D. 164,975 518,288 218,286 121,428 99,741 71,607 118,068 200,782

Note: The sum of the bilateral exposures each year is 484 (= 222). S.D. stands for
standard deviation.

6. Results

6.1. Estimation of bilateral CDS exposures matrix and network analysis

We estimate the bilateral netted CDS exposures matrix Z expressed in
equation (B.5) before we conduct the various systemic risk analyses. A bank’s
“gross negative fair value” is allocated as the CDS exposures among the
counterparties. The descriptive statistics of the estimated matrices are shown
in Table 2, and the percentile distribution by quarter is shown in Figure 3.
Table 2 shows the quartile at any year-end. All of the exposure sizes are near
zero at the 75th percentile. However, the sizes increase sharply from the 95th
percentile to the maximum, and they range from 1 billion to 10 billion US
dollars at maximum.

Next, we focus on the analyses of the US OTC CDS bilateral market
without central clearing, as shown in left panel of Figure 1 using network
centrality measures. The trade shares indexed as dealers/other banks in the
market are shown in Figure 2. The proportion of the bilateral market has
been decreasing gradually.

In order to consider the applicability of the various centrality measures
to the interconnectedness in the US CDS network, we calculate the correla-
tion among eight selected centrality measures: degree, weighted degree, ec-
centricity, closeness centrality, eigenvector centrality, betweenness centrality,
hyperlink-induced topic search (HITS) hub centrality, and PageRank (Fig-
ure 4). The centrality measures shown for illustrative purposes are calculated
based on the data as at the end of 2007 to 2014 and September 2015, and
some are substantially different from one another. The Pearson correlation
is reported in the upper part, and each line shows the linear regression.
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Figure 3: Bilateral exposure size distribution

Note: The distribution is shown in the range from the 90th percentile to the
100th percentile.

Eccentricity and closeness centrality represent a bank’s closeness, whereas
betweenness centrality measures a bank’s substitutability and shows the
bank’s central role in the network. The HITS hub centrality, eigenvector
centrality, and PageRank (a variation of eigenvector centrality) capture the
magnitude of the network relationships. The first measure relates to the obli-
gation payments and shows the systemic importance in the network, whereas
the second and third measures relate to the claims and exhibit no systemic
importance. From Figure 4, some strong correlation relationships are observ-
able, such as eccentricity versus closeness centrality and betweenness central-
ity versus weighted degree. In the following part of this subsection, in light
of each centrality’s availability in terms of systemic importance, we analyze
the interconnectedness, focusing on degree, betweenness centrality, and HITS
hub centrality in more detail.

First, the “degree” of a node is the number of edges connected to the
node. The “out-degree” is the number of outgoing edges emanating from a
node, and the “in-degree” is the number of incoming edges onto a node. In
a directed graph, which is defined as a set of nodes in which all the edges
are directed from one node to another, each node has a maximum of two
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degrees for each edge. The total degree of a node is the sum of its in- and
out-degrees. However, it is to be noted that the degree of each node in a
graph after taking bilateral netting is one at a maximum. The degree of a
node can be considered as a proxy variable for interconnectedness.

The top five banks ranked according to interconnectedness, which is mea-
sured in terms of the degree of their nodes, are shown in the upper part of
Table 3. They are dealers, such as JPMorgan Chase, Bank of America,
Citibank, HSBC Bank USA, and Goldman Sachs. Their netted degrees (i.e.,
one way) reached a peak of 15–21 for the crisis period of 2007 to 2009 and
thereafter, decreased. This trend is confirmed in Figure 5, which denotes
the directed graphs of the US CDS network as at the end of 2007 to 2014
and September 2015.9 The width of an edge denotes the size of its netted
CDS exposures at the end of the quarter. The color is a mix of its source
(start) node color and its target (end) node color. Certainly, the network is
significantly dense for the period, and thereafter, is sparser. In addition, we
can confirm that three to six large banks play a central role in each directed
graph.

Second, we analyze the interconnectedness of the US CDS network in
terms of “betweenness centrality” (Krause and Giansante, 2012; Kanno,
2015), which is a centrality measure of a node within a network graph. This
measure quantifies the number of times a node acts as a bridge along the
shortest path between two other nodes. Hence, betweenness centrality can
also be considered as a measure of substitutability. A node with high be-
tweenness centrality could potentially influence the spread of information
through the network. If the normalized betweenness centrality, which is de-
fined as (bc − min(bc))/(max(bc) − min(bc)) (bc: the betweenness centrality
of a node), is close to one, a node (i.e., bank A) acts as a bridge along most
of the shortest paths connecting two other nodes (i.e., banks B and C). If it
is close to zero, bank A is less important to the two other banks (i.e., banks
B and C) (Kanno, 2015).

The top five banks ranked according to interconnectedness as measured
in terms of betweenness centrality are shown in the middle part of Table 3.
There are about five banks a year with betweenness centrality of more than
zero, and the original (not normalized) centrality measure level is around 1.6

9For convenience drawing the graph, the exposure data are truncated to 10,000 US
dollars.
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Figure 5: Directed graphs based on degrees

Note 1: The figures are for 2007 to 2009 from the upper-left panel to the upper-right panel, for 2010 to
2012 from the middle-left panel to the middle-right panel, and for 2013 to 2015 from the
lower-left panel to the lower-right panel.

Note 2: The graph is drawn in the Fruchterman–Reingold layout. The nodes are the mass particles,
and the edges are the springs between the particles.
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on average and 90 at maximum. This is because of the structure that three
to six banks play a dominant role in the US CDS network. If a bank with
high betweenness centrality defaults, the clearing payment in the US CDS
market may become non-functional.

Third, we analyze the interconnectedness of the US CDS network in terms
of “HITS hub centrality.” HITS is known as “hubs” and “authorities.” HITS
is proposed to find the main structures in the World Wide Web (WWW). Web
pages are divided in two categories: hubs and authorities. By the creation of
a hyperlink from page p to q, the author of page p increases the authority of q.
The authority of a WWW site would be to consider its “in-degree” (i.e., the
hyperlinks to return to the home page). Hence, HITS authority centrality is
not suitable for measuring systemic importance of banks in the CDS network.
By contrast, a hub is defined as a WWW site pointing to many authorities.
Hence, HITS hub centrality considers systemic importance of banks in terms
of hub scores based on its “out-degree.” Banks with the highest hub play a
central role in the network. The weights are normalized to ensure that the
sum of their squares is 1.

The top five banks ranked according to interconnectedness as measured
in terms of HITS hub centrality are shown in the lower part of Table 3. For
the period of 2007 to 2010, in addition to dealer banks, such as JPMorgan
Chase, Bank of America, Citibank, and Goldman Sachs, non-dealer banks,
such as PNC and Keybank, are selected in terms of HITS hub centrality.
Thereafter, dealer banks are mainly selected as hub banks. Furthermore, the
correlation between HITS hub centrality and degree centrality is 0.58 from
Figure 4 and thus, is moderately high. As a result, the top five banks list of
the HITS hub centrality is relatively similar to that of degree centrality.

6.2. Estimation of market variables

The market values of assets and the drifts and volatilities of the asset re-
turns10 are estimated for each bank using the maximum likelihood estimation
methodology detailed in Appendix C. All of the parameter estimations are
conducted in local currency units. After final consolidation of the data, the
values in local currency units are converted into US dollars using quarterly
foreign exchange rates.

10Although the estimation frequency of assets and volatilities is monthly, one of the
drifts is estimated yearly, given the estimation procedure. In the later default analysis in
Subsection 6.3, only asset values are used.
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The six large banks (dealers) designated as global systemically impor-
tant banks (G-SIBs) are selected as graph samples from 22 banks. Their
estimation results are shown in Figures 7, 8, and 9.

Because the asset value is a latent variable11 and is not observable in the
financial market, it is important to check its level and time variation. Figure
7 shows that the asset values of previous investment banks, such as Goldman
Sachs and Morgan Stanley, substantially decreased just after the bankruptcy
of Lehman Brothers. By contrast, four large commercial banks increased
their asset values.

As for the asset return volatilities, in general, the higher the asset volatil-
ity of a bank, the larger is its probability of default in our framework—the
structural model approach of credit risk. The quarterly values of six selected
banks are less than 10%, which is not very volatile. Finally, with respect to
the asset return drifts, the quarterly average of 22 banks for 2006 to 2015
is about 0.03%. The less the drift of a bank, the larger is its probability of
default in our framework.

6.3. Contagious default analysis

The theoretical number of stand-alone defaulting banks and contagious
defaulting banks is estimated. During the estimation period of 2006–2015,
many stand-alone defaults occurred. By contrast, one contagious default
occurred. Figure 10 indicates the monthly variations of the total number of
stand-alone defaulting banks (upper panel) and contagious defaulting banks
(lower panel). Shortly after the bankruptcy of Lehman Brothers, the number
of stand-alone defaults jumped significantly, peaking at 10 in March 2009.
In addition, a second peak can be seen around March 2008 (the period of the
subprime mortgage crisis).

Figure 11 indicates the monthly variations of the loss amounts of banks
listed in Table A.6. The banks that suffered losses included the defaulting
banks as well as some banks that did not fall into a stand-alone default
or a contagious default category. Each bank suffered loss for any period
from 2006 to 2015, and during the subprime mortgage crisis and shortly
after the bankruptcy of Lehman Brothers, five large dealer banks—JPMorgan
Chase, Bank of America, Citibank, Goldman Sachs, and HSBC Bank USA—
suffered losses as a result of the payments from defaulting counterparties.

11The banks’ market capitalization data are not published in Bankscope for the period
when asset values were zero.
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This result is in accordance with the reality. These five banks had credit
exposure related to their derivatives trading that exceeds their capital, with
four in particular—JPMorgan Chase, Goldman Sachs, HSBC Bank USA,
and Citibank—taking especially large risks. According to the Office of the
Comptroller of the Currency, at the end of 2008, Bank of America’s total
credit exposure to derivatives was 179% of its risk-based capital; Citibank’s
was 278%; JPMorgan Chase’s was 382%; and HSBC Bank USA’s was 550%.
In addition, in the fourth quarter of 2008, Goldman Sachs began reporting
as a commercial bank, revealing an alarming total credit exposure of 1,056%,
or more than 10 times its capital.

6.4. Stress test

We conduct a systemic stress test to verify the resilience of the US CDS
network at an evaluation point in the future. CDS market dealers are as-
sumed as systemic sources with the potential to trigger systemic contagious
risk in the test. In addition, it is meaningful to examine whether the increas-
ing share of contracts through CCPs reduces systemic contagious risk. Hence,
we examine whether any one or more of the listed banks trigger contagious
defaults.

To examine the effect of contagious defaults, we stress any one or more
banks in each test run. The evaluation time point is assumed as the end
of 2016, at which point the market value of the asset of the selected bank
is reduced by 30% from its value at the end of September 2015. In terms
of the network structure, the exposures matrix at the end of either March
2009 (during the global financial crisis, without CCPs) or September 2015
is assumed. The liability value of each bank is assumed the same as that at
September 2015.12 Hence, the stresses are imposed on the asset value of each
bank and/or the CDS exposures network.

As a result, in a gross payment case (i.e., without bilateral netting), one
contagious default is triggered by stand-alone defaults of four major dealers,
given the gross exposures matrix at the end of March 2009, whereas no
default is triggered for the exposures matrix under consideration of netting
at the end of March 2009 and at the end of September 2015. In addition, no
default is triggered by the stand-alone default of one major dealer for each

12Because a bank’s GNFV for the CDS outstanding to its asset value is so small, being
2.5% at maximum, its recovery payment defaults to its counterparties would not trigger
a contagious default.
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Table 4: Number of contagious defaulting banks based on the stress test

Trigger dealer(s) (no. of dealers) CDS exposures matrix
March 2009 Sep 2015

BOA & CITI & GS & HSBC (4) 1(Gross)/0(Netting) 0

BOA / CITI / GS / HSBC / JPM (1) 0 0

Note 1: Abbreviations: BOA: Bank of America; CITI: Citibank; GS: Goldman Sachs; HSBC: HSBC
Bank USA; JPM: JPMorgan Chase.

Note 2: “Gross” in parentheses indicates the use of gross exposures matrix whereas “Netting”
indicates the use of netted exposures matrix.

exposures matrix (Table 4). Judging from this result, unless many stand-
alone defaults transpire simultaneously in a severe economic environment,
such as the global financial crisis, contagious default is unlikely. It is even
more unlikely because the share for central clearing steadily increases in the
near future. In addition, CDS payment defaults would not trigger contagious
defaults directly, given the current CDS network structure.

7. Sensitivity analysis

We assess the robustness of our analyses based on the estimated bilateral
exposures matrix. In Subsection 5.1, we estimate the bilateral exposures
matrix without any restriction as to the distribution for exposures, although
we consider the risk mitigation effect by CCPs after March 2010. However,
in this section, we consider the information pertaining to the core–periphery
structure as additional information for more possible estimation.13

13As a relevant study, Mistrulli (2011) argues that the comparison between the bilat-
eral exposures matrix based on the estimation methodology detailed in Appendix B (i.e.,
maximum entropy method) and the observed interbank matrix can be interpreted as a
theoretical comparison between complete and incomplete markets, which is proposed by
Allen and Gale (2000). In addition, Paltalidis et al. (2015) compare results obtained from
the maximum entropy method and the actual bilateral exposures matrix for the German
and French banking networks. They conclude that the maximum entropy method neither
over- nor under-estimates the bilateral exposures and is a suitable way to calibrate losses
generated by systemic shocks.
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Craig and von Peter (2014) present a core–periphery network model.
They call the set of top-tier banks “the core” and the set of lower-tier banks
“the periphery.” In the interbank market, top-tier banks lend to each other
(CC14: core to core), top-tier banks borrow from lower-tier banks (PC:
periphery to core), top-tier banks lend to lower-tier banks (CP : core to pe-
riphery), and lower-tier banks do not lend to each other (PP : periphery to
periphery; a square matrix of zeros.). Thus, the bilateral exposures matrix
Y with the core–periphery structure is constructed as follows:

Y =

[
CC CP
PC PP

]
. (11)

Core banks in the interbank market can be regarded as money center
banks. They act as dealers in a broad range of markets, including the CDS
market. According to Langfield et al. (2014), the strength of the core–
periphery structure significantly varies depending on the asset class; hence,
the core–periphery model fits more strongly for derivatives and marketable
securities than for unsecured lending and repo agreements.

In addition, Langfield et al. (2014) argue that pure derivatives houses
are at the core of the cluster related to “net CDS sold” as well as lending,
marketable securities, securities lending and repo exposure, and derivatives
exposure. This cluster comprises a group of dealers with significant exposures
to securities holders, diversified banks, and other banks in their own cluster,
mostly in the form of derivatives. These derivative houses are most likely
exposed to securities holders, whereas they have exposures in both directions
with more diversified banks partly due to market-making activities.

In order to obtain the optimal matrix with the core–periphery structure,
the approach to minimize a distance measure of the total error score is pro-
posed in Craig and von Peter (2014). As a result of the calculation by our
optimization, five or six major banks15 are selected as core banks. Figure 6
denotes the core–periphery network structure as at the end of 2007 and 2008.

Compared with Figure 5, there is no non-dealer–non-dealer relationship,

14Its symbol indicates a block in the following matrix Y .
15As at the end of 2007 (prior to the bankruptcy of Lehman Brothers), JPMorgan

Chase, Citibank, Bank of America, HSBC, and Wachovia are selected. As at the end of
2008 (shortly after the bankruptcy of Lehman Brothers), Goldman Sachs is selected in
addition to the five banks.
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although the related trade volume is essentially very small. We render the
network with the core–periphery structure sparser than the true network be-
cause it is assumed no contracts exist between periphery banks. By contrast,
the estimated network is denser than the true network because of the esti-
mation algorithm detailed in Appendix B. We use a modified version of the
Jaccard index and network density as means for validating the structure in
the network.

First, we introduce the so-called Jaccard index as a means to measure
similarities between two network structures. The index counts the number
of linkages that appear in two CDS networks (i.e., the network by an un-
constrained estimation and the network with the core–periphery structure)
and relates it to the total number of linkages in both networks. We make
one minor modification to the index to compensate for the deficiency—the
modified Jaccard index ranges from 0 to 1. Refer to Appendix D for details.
Table 5 denotes the modified Jaccard index both prior to the bankruptcy of
Lehman Brothers (as at December 2007) and shortly after the bankruptcy
of Lehman Brothers (as at December 2008). Both networks are quite similar
in that the index figures are 100% for both periods. Hence, the network ob-
tained from the unconstrained estimation has the same features and linkages
as the network with the core–periphery structure.

Second, we calculate the network density, which is the ratio of actual to
potential links between the nodes (Clerc et al., 2014). In a directed network,
the ratio is defined as:

p =
m

n(n− 1)
(12)

where n is the number of nodes and m is the number of linkages connecting
the nodes. This ratio ranges from 0 to 1, with higher values denoting “denser”
networks. As shown in Table 5, the network density for the network obtained
from the unconstrained estimation in Subsection 6.1 is only a little larger than
that for the network with the core–periphery structure as at both dates, and
hence, the number of degrees of this network is equal to or less than that of
the true network.

Thus, in terms of similarities between the network obtained from the
unconstrained estimation and the true network, we are convinced that our
analyses are robust as a whole.
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Table 5: Modified Jaccard index and network density

Date Mod. JC Index Network density
Unc. CP Diff. (Unc.−CP)

Prior to bk of LB (Dec-07) 100.00% 20.1% 19.3% 0.8%
Shortly after bk of LB (Dec-08) 100.00% 23.6% 22.6% 1.0%

Note : Abbreviations: JC: Jaccard; Unc.: the density for the network obtained from the unconstrained
estimation; CP: the network density for the network with the core–periphery structure; bk of
LB: the bankruptcy of Lehman Brothers.

8. Conclusions

In this study, we analyzed the network structure of the US CDS market
considering bilateral netting, central clearing, and compression and assessed
the systemic importance of each bank for the period of the global financial
crisis and thereafter. During the crisis, AIG faced a management crisis owing
to AIG-FP’s massive short position. Nonetheless, the interconnectedness
in the US CDS network is not necessarily large compared to that of other
financial networks owing to the introduction of CCPs.

First, we theoretically analyzed the CDS network structure using vari-
ous network centrality measures, in terms of assessing systemic importance.
Based on such measures as degree, betweenness centrality, and HITS hub cen-
trality, one significant finding is that three to six major banks have played a
central role in the network in the past.

Second, we modeled the mechanism of contagious defaults in the US CDS
network and theoretically analyzed the contagious defaults conditional on a
stand-alone default during and after the global financial crisis, using real
contracts data on the FDIC Call Reports. Our analysis theoretically shows
a few contagious defaults triggered by stand-alone defaults during the global
financial crisis.

Third, we conducted a stress test and analyzed the possibility of con-
tagious defaults conditional on any one or more stand-alone defaults in the
future. We proved that the possibility of contagious defaults triggered by the
risk contagion via the CDS network is very low.

As a complement to the first contribution, sensitivity analysis proved the
robustness of the estimated bilateral exposures matrix after netting. Be-
cause it is virtually impossible to obtain a complete dataset of the bilateral
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Figure 7: Monthly variations in asset values for selected banks (in 1,000 of
local currency units)

exposures for derivative contracts, such as CDSs, we estimated the bilateral
exposures matrix from the aggregated positions of each bank using an esti-
mation algorithm (i.e., the RAS algorithm). To assure the robustness of the
estimated matrix, we used the core–periphery model and such measures as
the modified Jaccard index and network density.

Our methodology could assist in the development of monitoring and early-
warning indicators related to systemic risk in the CDS network by supervisory
authorities. In addition, it could be used in the implementation of banks’
internal systemic stress tests of contagion risk.
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Appendix A. US banks list

The US banks for the analyses are listed in Tables A.6.

Table A.6: 22 US banks list

No Bank name G14 ICE CME
1 BB & T
2 Bank of America ⃝ ⃝ ⃝
3 BONY
4 Citibank ⃝ ⃝ ⃝
5 Comerica
6 Commerce Kansas City
7 Goldman Sachs ⃝ ⃝ ⃝
8 HSBC Bank USA ⃝ ⃝ ⃝
9 JPMorgan Chase ⃝ ⃝ ⃝
10 Keybank
11 Merrill Lynch ⃝ ⃝ ⃝
12 Bank of Tokyo-Mitsubishi UFJ Trust
13 Morgan Stanley ⃝ ⃝ ⃝
14 National City
15 Northern Trust
16 PNC
17 Regions
18 State Street
19 Sun Trust
20 U.S. Bank
21 Wachovia ⃝
22 Wells Fargo ⃝ ⃝

Note: “⃝” indicates a dealer in G14, ICE Clear Credit or CME Group. “G14” indicates the largest 14
derivatives dealers.

Source: Chen et al. (2011), ICE Clear Credit (2015), and CME Group Home Page.
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Appendix B. Estimation methodology of bilateral exposures ma-
trix

The contract relationship in the US CDS network is represented by the
following (N ×N) gross negative fair value matrix16 X:∑

j

X =


x11 · · · x1j · · · x1N
...

. . .
...

...
...

xi1 · · · xij · · · xiN
...

. . .
...

...
...

xN1 · · · xNj · · · xNN


a1
...
ai
...
aN∑

i

l1 · · · lj · · · lN

(B.1)

where xij denotes the outstanding exposures payable of bank i to bank j.
Summing across row i gives bank i’s total gross positive fair value receivable,
and summing down column j gives bank j’s total gross negative fair value
payable as follows:

ai =
∑
j

xij, lj =
∑
i

xij. (B.2)

Typically, a bank’s aggregated data on gross fair values are obtained only
from the FFIEC Central Data Repository; hence, estimating matrix X with-
out imposing further restrictions is not possible. If additional information
is unavailable, one possible approach would be to choose a distribution that
minimizes the uncertainty, such as the amount of information related to the
distribution for these exposures. By following a normalization such that∑

i ai =
∑

j lj = 1, the solution xij = ai ∗ lj is yielded, which represents the
normalized amount bank i received from bank j. Thus, the exposures reflect
the relative importance of each bank in the CDS network. When calculating
matrix X, we consider the fact that an bank cannot have exposure to itself.

16Matrix X is treated as not only the gross negative fair value matrix L in Section 3
but also as the gross positive fair value matrix.
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Therefore, we populate the values into x0
ij as follows:

x0
ij =

{
0 , for any i = j

ailj , otherwise.
(B.3)

Matrix X0 = (x0
ij) violates the summing constraints expressed in equation

(B.2). Hence, a new matrix X must be found to satisfy the constraints.
Some possible methodologies are presented by Upper (2011), Elsinger et al.
(2002), and Wells (2004). The solution is provided by solving the optimiza-
tion problem as follows:

min
N∑
i=1

N∑
j=1

xij ln

(
xij

x0
ij

)

subject to
N∑
j=1

xij = ai,
N∑
i=1

xij = lj, xij ≥ 0.

(B.4)

The RAS algorithm is used to solve this type of problem. For further details,
refer to Censor and Zenios (1998). Finally, netted current credit exposure
matrix Z is calculated as a square matrix whose diagonal elements are all
equal to zero, as follows:

Z =


0 (x12 − x21)+ · · · (x1j − xj1)

+ · · · · · · (x1N − xN1)
+

(x21 − x1,2)+ 0 · · · (x2j − xj2)
+ · · · · · · (x2N − xN2)

+

.

.

.
.
.
.

. . .
.
.
.

...
.
.
.

.

.

.
(xi1 − x1i)

+ · · · · · · 0 · · · · · · (xiN − xNi)
+

..

.
..
.

...
..
.

. . . 0
..
.

(xN1 − x1N )+ (xN2 − x2N )+ · · · (xNj − xjN )+ · · · · · · 0

(B.5)

where (a)+ denotes the maximum of a and zero.

Appendix C. Estimation methodology of market value based pa-
rameters of assets

We consider a probability space (Ω,F , P ) in which the generated filtration
F = (F)t∈[0,T ] satisfies the usual conditions. The dynamics of asset value V (t)
follows a geometric Brownian motion:

dV (t)

dt
= µV dt + σV dW (t), t ∈ [0, T ], (C.1)
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where µV is the constant drift of asset returns, σV is the constant volatility
of asset returns, and W (t) is the standard Brownian motion. The solution
to this equation is obtained as

V (T ) = V (t)e

(
µV −σ2

V
2

)
(T−t)+σV

√
T−tz, t ∈ [0, T ], (C.2)

where z is a standard normal random variable. The market value of equity
at time T is given as

E(T ) = max[V (T ) −D(T ), 0], (C.3)

where D(T ) indicates the default threshold expressed by the constant value
of the interest-bearing debt for risk horizon T . Under certain assumptions,
the solution to equation (C.3) for equity values in t is given by the Black–
Scholes model. We estimate the market value of assets using the methodology
proposed by Duan (1994), which was later augmented by Duan (2000) and
Duan et al. (2004). This methodology is based on a maximum likelihood
estimation. Duan et al. (2004) introduce the log-likelihood equation for the
estimation of µV , σV and V (th), th = (0, . . . , kh, . . . , nh) using the observed
market values of equity as follows:

l(θ̂V ; V̂i(th)|E(th)) = − n

2
ln(2πσ̂2

V h) − 1

2

n−1∑
k=1

(
R̂(kh) −

(
µ̂V − σ̂2

V

2

)
h
)2

σ̂2
V h

−
n∑

k=1

ln(V̂ (kh)) −
n∑

k=1

ln(Φ(d1)),

(C.4)

where θ̂V := (µ̂V , σ̂V ), h = 1
12

year, and Φ is the cumulative distribution

function of the standard normal variables. V̂ (u) (u = kh ≤ nh = T, 1 ≤
k ≤ n) is estimated as the solution to equation (C.3) using the Black-Scholes
model as follows:

E(u) = V (u)Φ(d1) −D(u)e−r(T−u)Φ(d2), (C.5)

where

d1 =
ln V (u)

D(u)
+
(
r +

σ2
V

2

)
(T − u)

σV

√
T − u

, d2 =
ln V (u)

D(u)
+
(
r − σ2

V

2

)
(T − u)

σV

√
T − u

,
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and r is the risk-free interest rate. Equity and asset volatilities are related
in the following equation provided by Crosbie and Bohn (2003):

σE =
V (u)

E(u)
Φ(d2)σV , (C.6)

where σE is the constant volatility of equity returns. The time series of the
monthly market value of equity from which the parameter is estimated equals
th = (0, h, 2h, . . . , nh), where n = 12 months and h = 1/12. Each iteration of
the optimization calculation produces a time series of monthly values V̂ (th),
where the maturity of the liability ranges over th = (0, h, 2h, . . . , nh). The

initial values of V̂ (m)(kh) and σ̂
(m)
V (kh) (m: the m-th iteration of the opti-

mization calculations; 1 ≤ k ≤ n) are chosen arbitrarily. However, we set
V̂ (0)(kh) as E(kh) plus D(kh) using data from the balance sheet of bank i

and σ̂
(0)
V (kh) as σ̂EE(kh)/V̂ (0)(kh) from equation (C.6). E(kh) is the market

capitalization of bank i at the end of the year. D(0) is the total face value
of the interest-bearing debt of bank i at the end of the year. σE is estimated
from the time-series of the monthly natural logarithms of the returns on bank
equity as follows:

σ̂E =

√√√√ 1

n

n∑
k=1

(R̂(kh) − R̄)2
√

12, (C.7)

where

R̂(kh) = ln
V̂ (kh)

V̂ ((k − 1)h)
, (C.8)

R̄ =
1

n

n∑
k=1

R̂(kh). (C.9)

The estimation procedure is as follows:

Step 1: Estimate the monthly values of V̂ (kh) and σ̂V (kh) (1 ≤ k ≤ n)
using the monthly market capitalization data from equations (C.5) and
(C.6).

Step 2: Calculate the average values of yearly volatilities using the monthly
estimated volatilities σ̂V (kh) and set them as the initial values. Esti-
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mate the yearly values of µV , σV by finding the maximum of equation
(C.4).

Step 3: Calculate the monthly values of V̂ (kh) once again given σ̂V from
equation (C.5).

This procedure allows the estimation of parameters based on the methodol-
ogy proposed by Duan (1994, 2000) and Duan et al. (2004) using the monthly
dataset with a maximum of 12 data points.

Appendix D. Modified Jaccard index

The Jaccard index measures similarities between network structures and
neglects the weight of the links. Hence, we modify the index to compensate
for this deficiency. The weighted adjacency matrices M1 and M2 express
the features of two given networks N1 and N2, respectively (Ha laj and Kok,
2015). Both networks span on the same set of N nodes as follows:

M12 := {(i, j) ∈ N̄× N̄|(i, j) ∈ N1 ∧ (i, j) ∈ N2}
M10 := {(i, j) ∈ N̄× N̄|(i, j) ∈ N1 ∧ (i, j) /∈ N2}
M02 := {(i, j) ∈ N̄× N̄|(i, j) /∈ N1 ∧ (i, j) ∈ N2}

where N̄ stands for a set {1, 2, . . . , N}. The set M12 express the number of
links overlapped among both network graphs (sets), the sets M10 and M02
are present in one graph but not in the other. The modified Jaccard index
is defined as follows:

J(N1,N2) =
(#M12)

∑
(i,j)∈M12(M

1
i,j + M2

i,j)∑
Z∈{M12,M10,M02}

(
(#Z)

∑
(i,j)∈Z(M1

i,j + M2
i,j)

) (D.1)

where #M12 and #Z express the number of entries in the set M12 and one in
any set of a group (M12, M10, or M02), respectively and J(N1,N2) ∈ [0, 1].
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